# RINGS IN WHICH EVERY NONZERO S-WEAKLY PRIME IDEAL IS S-PRIME

#### CHAHRAZADE BAKKARI AND HAMZA EL-MZAITI

ABSTRACT. In this paper, we introduce and study a new class of rings with multiplicative subset S which we'll call S-WP-rings. A ring R with a multiplicative subset S is said to be S-WP-ring if every nonzero S-weakly prime ideal is S-prime. We next study the possible transfer of the properties of being S-WP-ring in the homomorphic image, in the localization, in the trivial ring extensions and the amalgamated algebra along an ideal introduced and studied by the authors of [5, 6, 7, 8]. Our results allow us to construct new original class of S-WP-rings subject to various ring theoretical properties.

#### 1. Introduction

Our aim is to introduce and study the class of rings in which every nonzero S-weakly prime ideal is S-prime. Throughout this paper, all rings considered are assumed to be commutative with non-zero identity and all modules are nonzero unital. In [10], A. El Khalfi, N. Mahdou and Y. Zahir introduced the concept of WP-rings. A ring A is called WP-ring if every nonzero weakly prime ideal is prime. Recently, the concept of S-property has an important place in commutative algebra and they draw attention by several authors. The S-weakly prime ideals introduced by the authors of [1, 18] is a generalization of the work of A. Hamed and A. Malek in [12]. Following [18] a proper ideal P is said to be S-weakly prime (where  $S \subseteq A$  multiplicative set, and  $P \cap S = \emptyset$ ) if there exists  $s \in S$  such that the following condition holds for every  $a, b \in A$ :  $0 \neq ab \in P$  implies that either  $a \in P$  or  $ab \in P$ . We denote  $\sqrt{0}$  is the set for all nilpotent elements of A; Ann(I) or (0: I) denote the annihilator of an ideal I; Reg(A) denotes the set of all regular elements of A. If A is an integral domain, we denote its quotients field by qf(A).

<sup>2010</sup> Mathematics Subject Classification. 13A15, 13D05,13D02 13E99.

 $Key\ words\ and\ phrases.\ S-WP-{\rm ring},\ S-{\rm weakly}\ {\rm prime\ ideal},\ S-{\rm prime\ ideal},\ {\rm Trivial\ ring\ extension}.$ 

Clearly, every S-prime ideal is S-weakly prime, but the converse is not true in general. For example, the zero ideal is a weakly prime (by definition) and so, it is S-weakly prime however is not S-prime if we assume that the ring considered is not an integral domain. There is no investigation on the following natural question: when every nonzero S-weakly prime ideal is S-prime? For this, it is could be interest to study a class of rings satisfying the above question. We focus our attention to this study instead of class of rings in which every S-weakly prime ideal is S-prime. Let R be a ring and E an R-module. Then  $R \propto E$ , the trivial ring extension of R by E, is the ring whose additive structure is that of the external direct sum  $R \oplus E$  and whose multiplication is defined by (a, e)(b, f) := (ab, af + be) for all  $a, b \in R$  and all  $e, f \in E$ . (This construction is also known by other terminology and other notation, such as the idealization R(+)E) (see [14, 11, 4, 16]).

Let A and B be two rings, let J be an ideal of B and let  $f: A \longrightarrow B$  be a ring homomorphism. In this setting, we can consider the following sub-ring of  $A \times B$ :

$$A \bowtie^f J = \{(a, f(a) + j) \mid a \in A, j \in J\},\$$

called the amalgamation of A with B along J with respect to f (introduced and studied by D'Anna et al. [6, 8]). This construction is a generalization of the amalgamated duplication of a ring along an ideal (introduced and studied by D'Anna and Fontana [7] and denoted by  $A \bowtie I$ ).

This paper consists of three sections including introduction. In section 2, we investigate the transfer of S-WP-ring property to localization and homomorphic image. We next give the necessary conditions of different from nilpotent ideal to be a S-weakly prime which is not S-prime, this result allows us to give a characterization of S-WP-rings. In section 3, we study the possible transfer of the properties of being S-WP-ring in the amalgamated algebra along an ideal introduced and the trivial ring extensions.

# 2. Basic results

In this section, we introduce the S-WP-rings and we next give some properties of the notion. Our first definition in this section is given as follows.

**Definition 2.1.** A ring A with multiplicative subset S is called S-WP-ring if every nonzero S-weakly prime ideal is S-prime.

**Remarks 2.2.** (1) If  $S \subseteq U(A)$ , A is an S - W - P-ring if and only if it is WP-ring.

(2) If A is an integral domain, then A is an S-WP-ringfor every multiplicative subset S of R.

It is clear that if  $S_1, S_2, \dots, S_n$  are multiplicative subsets of the rings  $R_1, R_2, \dots, R_n$  respectively, then  $\prod_{i=1}^n S_i$  is a multiplicative subset of the ring  $R = \prod_{i=1}^n R_i$ . Next, we study the stability of the S-WP-ring under direct product.

**Proposition 2.3.** Let  $n \geq 2$  be an integer and  $S_1, S_2, \dots, S_n$  be multiplicative subsets of the rings  $R_1, R_2, \dots, R_n$  respectively. Set  $R = \prod_{i=1}^n R_i$  and  $S = \prod_{i=1}^n S_i$ . Then R is always an S-WP-ring.

*Proof.* It is enough to prove that this proposition is true for n=2, the general case is established by induction on n. If P is a non-zero  $(S_1 \times S_2)$ -weakly prime ideal of the ring  $R_1 \times R_2$ , then P is  $(S_1 \times S_2)$ -prime by [18, Theorem 2.4]. Therefore,  $R_1 \times R_2$  is an S-WP-ring.  $\square$ 

Next, let A be a ring, S be a multiplicative subset of A and I be an ideal of A. Assume that  $I \cap S = \emptyset$ . Notice that  $\overline{S} = \{s+I \mid s \in S\}$  is a multiplicative subset of A/I. It is easy to verify that if  $(P/I) \cap \overline{S} = \emptyset$ , then  $P \cap S = \emptyset$ .

The following proposition establishes the transfer of the S-WP-ring property to homomorphic image.

**Proposition 2.4.** Let A ba a ring with multiplicative subset S and I be an S-weakly prime ideal of A. If A is an S-WP-ring, then A/I is an  $\overline{S}$ -WP-ring.

*Proof.* Assume that A is an S-WP-ring, of A and let J be a nonzero  $\overline{S}$ -weakly prime ideal of A/I. Then if  $P/I \cap \overline{S} = \emptyset$ , J = P/I where P is a nonzero S-weakly prime ideal of A by [18, Prposition 2.6]. As A is an S-WP-ring, we get P is S-prime and so P/I is an  $\overline{S}$ -prime ideal of A/I by [12, Proposition 3]. Therefore, A/I is an  $\overline{S}$ -WP-ring. Now, if  $(P/I) \cap \overline{S} \neq \emptyset$ , then the desired result is obvious.

**Corollary 2.5.** Let A be a ring such that  $S \subset U(R)$  and I is weakly prime. If A is a WP-ring, then A/I is a WP-ring.

*Proof.* Obvious by Proposition 2.4.

**Proposition 2.6.** Let A be a ring and S be a multiplicative subset of R consist of regular elements. If  $S^{-1}A$  is a WP-ring, then every nonzero S-weakly prime ideal disjoint of S is S-prime. The converse is true if

the condition holds: for any ideal  $S^{-1}P$  of  $S^{-1}A$ , there exists  $s \in S$  such that  $S^{-1}P \cap A = (P : s)$ .

Proof. Let P be a nonzero S-weakly prime ideal of A such that  $I \cap S = \emptyset$ . Then  $S^{-1}P$  is weakly prime ideal of  $S^{-1}A$  and  $S^{-1}P \cap A = (P:s)$  for some  $s \in S$  by [1, Proposition 2.14]. Since  $S^{-1}A$  is WP-ring, we get  $S^{-1}P$  is prime. Now, we claim that P is an S-prime ideal of A. Let  $a, b \in A$  such that  $ab \in P$ . Since  $\frac{a}{1}\frac{b}{1} \in S^{-1}P$ , we get  $\frac{a}{1} \in S^{-1}P$  or  $\frac{b}{1} \in S^{-1}P$ . But If  $\frac{a}{1} \in S^{-1}P$ , then  $\frac{a}{1} = \frac{x}{s}$  for some  $x \in P$  and for some  $s \in S$ , thus  $tas = tx \in P$  for some  $t \in S$ . Now, we get  $sa \in P$  for some  $s \in S$ . Therefore, P is an S-prime ideal of A.

Now assume that for any ideal  $S^{-1}P$  of  $S^{-1}A$ , there exists  $s \in S$  such that  $S^{-1}P \cap A = (P:s)$ . Then  $S^{-1}P \cap A = (P:s)$ . Let  $S^{-1}P$  be a weakly prime ideal of  $S^{-1}A$  and let  $S^{-1}P \cap A = (P:s)$  for some  $s \in S$ . Following the [1, Proposition 2.14], we get P is an S-weakly prime ideal of A ( $P \cap S = \emptyset$ ). By hypothesis, we get P is S-prime. Hence  $S^{-1}P$  is a prime ideal of  $S^{-1}A$  by [12, Remark 1], we are done.

The next Propositions 2.7 and 2.8 establish when the Nilradical of a ring is S-prime.

**Proposition 2.7.** If P is an S-weakly prime ideal of A, then either  $sP \subseteq \sqrt{0}$  for some  $s \in S$  or there exists  $s \in S$  such that for every  $x \in \sqrt{0}$ , we get  $s^n x \in P$  for some n.

*Proof.* Assume that P is an S-weakly prime ideal of A. If P is not S-prime, then  $s^2P^2=0$  for some  $s\in S$  by [18, Theoreme 2.3]. Let  $x\in sP$ , so x=sx' for some  $x'\in P$ . But we have  $sx'sx'=(sx')^2=0$  and so  $sx'\in \sqrt{0}$ . Thus  $sP\subseteq \sqrt{0}$  for some  $s\in S$ . Now, if P is S-prime, then there exists  $s\in S$  such that for every  $x\in \sqrt{0}$ , we get  $s^nx\in P$  for some n, as desired.

**Proposition 2.8.** Let A be a ring. If  $\sqrt{0}$  is S-weakly prime such that  $Ann(\sqrt{0}) \subseteq \sqrt{0}$ , then  $\sqrt{0}$  is S-prime.

Proof. Let  $a,b \in A$  such that  $ab \in \sqrt{0}$ . If  $ab \neq 0$ , then there exists  $s \in S$  such that  $sa \in \sqrt{0}$  or  $sb \in \sqrt{0}$ . Since  $\sqrt{0}$  is an S-weakly prime ideal. Then we may assume that ab = 0. If  $a\sqrt{0} \neq 0$ , then there exists  $r \in \sqrt{0}$  such that  $ar \neq 0$  and so  $0 \neq (b+r)a \in \sqrt{0}$ . There exists also  $s \in S$  such that  $s(b+r) \in \sqrt{0}$  or  $sb \in \sqrt{0}$ . Now assume that  $a\sqrt{0} = 0$ . Likewise  $b\sqrt{0} = 0$  and so  $a \in Ann(\sqrt{0})$  implies that  $a \in \sqrt{0}$ . Hence  $sa \in Ann(\sqrt{0})$  for some  $s \in S$ , as desired.

Let R be a ring and  $\mathfrak{q}$  be a proper ideal. Let S be a multiplicative subset of R. For an element  $s \in S$ , we set s-tor $(R/\mathfrak{q}) := \{r \in R \mid sr \in \mathfrak{q}\}$ .

Recall from [18] that if R is a ring and S be a multiplicative subset of R. A proper ideal  $\mathfrak{q}$  is said to be S-(weakly)-prime if there exists  $s \in S$  such that for every  $a, b \in R$ , we have:  $ab \neq 0$   $(\mathfrak{q}, s)$  this ideal.

The following theorem characterizes the S-WP-rings.

**Theorem 2.9.** Let R be a ring and S be a multiplicative subset. The following are equivalent:

- (1) R is an S-WP-rings,
- (2) Every S-weakly prime ideal  $(\mathfrak{q}, s)$ , the following condition holds: For every  $a \in Z(R)$ , either  $a \in s\text{-tor}(R/\mathfrak{q})$  or  $(0:a) \subset s\text{-tor}(R/\mathfrak{q})$ ,
- (3) Every S-weakly prime ideal  $(\mathfrak{q}, s)$ , the following condition holds: For every  $a \in Z(R)$ , either  $sa \in \mathfrak{q}$  or  $s(0:a) \subset \mathfrak{q}$ .

The proof of Theorem 2.9 follows immediately from the following lemma.

**Lemma 2.10.** Let R be a ring and S its multiplicative subset. The following are equivalent for a proper ideal  $\mathfrak{q}$  of R:

- (1)  $(\mathfrak{q}, s)$  is S-weakly-prime ideal such that the following condition holds: For every  $a \in Z(R)$ , either  $a \in s$ -tor $(R/\mathfrak{q})$  or  $(0:a) \subset s$ -tor $(R/\mathfrak{q})$ .
- (2)  $(\mathfrak{q}, s)$  is S-prime ideal.

*Proof.* The Lemma is obvious if we assume that R is a domain. It is established when  $Z(R) \neq 0$ .

 $(1) \Rightarrow (2)$  Let  $a, b \in R$  such that ab = 0. Our aim is to claim that either  $sa \in \mathfrak{q}$  or  $sb \in \mathfrak{q}$ .

Case 1: If at least one of a or b is zero, then the result is trivial.

Case 2: Assume that both a and b are non-zero elements of R. Then  $a \in Z(R) \setminus \{0\}$ . By hypothesis, either  $a \in s\text{-}tor(R/\mathfrak{q})$  or  $(0:a) \subset s\text{-}tor(R/\mathfrak{q})$ , that is,  $sa \in \mathfrak{q}$  or  $sb \in \mathfrak{q}$  since  $b \in (0:a)$ . Therefore,  $\mathfrak{q}$  is S-prime ideal.

 $(2)\Rightarrow (1)$  It is enough to check the following condition "for every  $a\in Z(R)\backslash \{0\}$ , either  $a\in s$ -tor $(R/\mathfrak{q})$  or  $(0:a)\subset s$ -tor $(R/\mathfrak{q})$ ", since every S-prime ideal is S-weakly prime. Let  $a\in Z(R)\backslash \{0\}$ . So, if  $a\in s$ -tor $(R/\mathfrak{q})$ , then as desired. If  $a\not\in s$ -tor $(R/\mathfrak{q})$ , then we claim that  $(0:a)\subset s$ -tor $(R/\mathfrak{q})$ . Let  $b\in (0:a)$ , then ab=0 and so either  $sa\in \mathfrak{q}$  or  $sb\in \mathfrak{q}$  since  $\mathfrak{q}$  is assumed S-prime. But  $a\not\in s$ -tor $(R/\mathfrak{q})$ , then necessarily  $sb\in \mathfrak{q}$ , i.e.,  $b\in s$ -tor $(R/\mathfrak{q})$ . Therefore,  $(0:a)\subset s$ -tor $(R/\mathfrak{q})$ . This proof is completed.

### Proof of Theorem 2.9

This follows immediately from Lemma 2.10

Next, we will give a condition for which the S-weakly prime ideals and weakly-prime are the same. For this purpose, we recall the following Definition 2.11.

 $\square$ .

**Definition 2.11.** [17, Definition 1.6.10] Let R be a ring and S be a multiplicative subset. An R-module M is said to be S-torsion free if every  $s \in S$  and every  $x \in M$  such that sx = 0, we get x = 0.

The following Theorem 2.12 links the S-weakly prime ideals with weakly prime.

**Theorem 2.12.** Let R be a ring and S be a multiplicative subset and  $s \in S$ . If  $\mathfrak{q}$  is a proper ideal of R such that  $R/\mathfrak{q}$  is an S-torsion-free R-module, the the following are equivalent:

- (1)  $(\mathfrak{q}, s)$  is S-weakly-prime,
- (2) q is weakly-prime.

*Proof.*  $(2) \Rightarrow (1)$  This is obvious.

 $(1)\Rightarrow (2)$  Let  $a,b\in R$  such that  $ab\neq 0$  and  $ab\in \mathfrak{q}$ . Our aim is to show that either  $a\in \mathfrak{q}$  or  $b\in \mathfrak{q}$ . Denoted by  $\overline{x}:=x+\mathfrak{q}$  in  $R/\mathfrak{q}$  for every  $x\in R$ ), since  $\mathfrak{q}$  is S-weakly prime, then either  $sa\in \mathfrak{q}$  or  $sb\in \mathfrak{q}$ , i.e.,  $s\overline{a}=\overline{0}$  or  $s\overline{b}=\overline{0}$ . But  $R/\mathfrak{q}$  is an S-torsion-free R-module, implies that either  $\overline{a}=\overline{0}$  or  $\overline{b}=\overline{0}$ , i.e.,  $a\in \mathfrak{q}$  or  $b\in \mathfrak{q}$ , as desired  $\mathfrak{q}$  is weakly-prime.

Next, we study the possible transfer of the properties of being S-WP-ring in the trivial ring extensions. It is known from [3] that if S is a multiplicative subset of A, then  $S \propto E$  is a multiplicative subset of  $A \propto E$ . We starts this part by characterization of the ideal of the form  $I \propto F$  be S-weakly prime ideal.

**Theorem 2.13.** Let A be a ring, I be an ideal of A, F a submodule of E and S a multiplicative subset of A such that  $S \subseteq Reg(A)$  and  $S \cap Ann(F) = \emptyset$ . Then  $I \propto F$  is  $(S \propto 0)$ -weakly prime if and only if the following condition holds:

- (1) I is S-weakly prime ideal of A and  $s^2I^2 = 0$  when  $SE \nsubseteq F$  for every  $s \in S$ ;
- (2) If  $b \in A$  and  $s'f \notin F$ , then bf = 0 or  $bf \notin F$ ;
- (3) If  $ab \neq 0$  and  $s'a \in I, s'b \notin I$ , then  $be \notin F$  for each  $se \notin F$ ;
- (4) If ab = 0, then
  - (i) af + be = 0 or  $af + be \notin F$  for each  $s'e, s'f \notin F$ ;
  - (ii) If  $s'a \notin I$  and  $s'b \notin I$ , then  $a \in Ann(F)$  and  $b \in Ann(F)$ .

*Proof.* Assume that  $I \propto F$  is an  $(S \propto 0)$ -weakly prime ideal of  $A \propto E$ . Let  $a, b \in A$  such that  $0 \neq ab \in I$ , then  $(0,0) \neq (a,0)(b,0) \in I \propto F$ implies that there exists  $(s,0) \in S \propto 0$  such that  $(s,0)(a,0) \in I \propto F$ or  $(s,0)(b,0) \in I \propto F$ . So  $sa \in I$  or  $sb \in I$  and hence I is an S-weakly prime ideal of A. Assume that  $SE \not\subset F$  for some  $s \in S$ , whence  $((s,0)I \propto F)^2 = 0$  by [18, Theorem 2.3] and so  $S^2I^2 = 0$ . Consequently (1) holds. Now, let  $b \in A$  and  $s'f \notin F$  and assume that  $bf \neq 0$  and  $bf \in F$ , then  $(0,0) \neq (b,f)(0,f) \in I \propto F$  implies there exists  $(s',0)(b,f) \in I \propto F$  or  $(s',0)(0,f) \in I \propto F$ . But neither  $(s',0)(b,f) \in I \propto F$  nor  $(s',0)(0,f) \in I \propto F$  a contradiction, so (2) holds. Let  $s'a \in I$  and  $s'b \notin I$  such that  $ab \neq 0$  and assume that  $be \in F$ for each  $s'e \notin F$ , then  $(0,0) \neq (a,e)(b,0) = (ab,be) \in I \propto F$  and so  $(s',0)(b,0) \in I \propto F \text{ or } (s',0)(a,e) \in I \propto F, \text{ but neither } (s_0,0)(b,0) \in I$  $I \propto F$  nor  $(s',0)(a,e) \in I \propto F$ , a desired contradiction, so (3) holds. Assume that ab = 0, we pick  $s'e, s'f \notin F$  such that  $af + be \neq 0$  and  $af + be \in F$ , then  $(0,0) \neq (a,e)(b,f) = (ab,af + be) \in I \propto F$  but neither  $(s',0)(a,e) \in I \propto F$  nor  $(s',0)(b,f) \in I \propto F$  a contradiction. Finally, let  $s'a \notin I$  and  $s'b \notin I$ . Assume that there exists  $e \in F$  such that  $ae \neq 0$ , then  $(0,0) \neq (a,0)(b,e) = (ab,ae) \in I \propto F$  and but neither  $(s',0)(a,0) \in I \propto F$  nor  $(s',0)(b,e) \in I \propto F$  a contradiction. By similarly way, we get  $b \in Ann(F)$ .

Conversely, let  $(0,0) \neq (a,e)(b,f) \in I \propto F$  so  $ab \in I$ , two case are then possible.

Case 1: If  $ab \neq 0$  there exists  $s' \in S$  such that  $s'a \in I$  or  $s'b \in I$ . Assume that  $s'a \in I$ . If  $s'e \in F$ , then  $(s',0)(a,e) = (s'a,s'e) \in I \propto F$  as desired. Assume that  $s'e \notin F$ , if  $sE \subset F$  for some  $s \in S$ ,  $s'',s',e \in F$ , put s=s''s', so  $sa=s'',s'a \in I$  since  $s'a \in I$  and  $se=s's' \in F$ , then we get  $(s,0)(a,e) \in I \propto F$ . Assume that  $sE \nsubseteq F$  for every  $s \in S$  then  $s'^2I^2=0$  for some  $s' \in S$ , we put that b'=s'b. If  $s'b \in I$ , then  $s'^2ab \in s'^2I^2=0$  and so ab'=0. Hence s'ab=0. It follows that ab=0 since s is a regular element, a contradiction with the fact that  $s'b' \notin I$ . So suppose that  $s'e \notin F$ . By (3), we have  $b'e \notin F$  and so  $s'be \notin F$ , we get also  $s'a \in I$ , then  $s'af \in F$ ,  $(IE \subseteq F)$  and we have  $s'af+s'be \in F$ , a desired contradiction.

Case 2: If ab = 0. Suppose that s'e and  $s'f \notin F$ . By (4) we have af + be = 0 or  $af + be \notin F$  a contradiction. Then  $s'e \in F$  or  $s'f \in F$ . On the other hand, assume that neither  $s'a \in I$  nor  $s'b \in I$ . If  $s'e \in F$  and  $s'f \in F$ , then by (4) s'(af + be) = 0 and so af + be = 0 since  $S \cap Ann(E) = \emptyset$ , again a contradiction. Hence without loss of generality, we may assume that  $s'e \in F$  and  $s'f \notin F$ . By (4) and (2), we get s'be = 0 and s'af = 0 or  $s'af \notin F$ , a contradiction. Then

 $s'a \in I$  or  $s'b \in I$ . Assume that  $s'a \in I$  and  $s'e \notin F$ , then  $s'f \in F$ . But if  $s'a \in I$ , then  $(s',0)(b,f) \in I \propto F$ . Now if  $s'b \notin I$ , then by (4) we have af = 0. Since  $s'e \notin F$  by (2), either s'be = 0 or  $s'be \notin F$ , a contradiction. Hence  $s'e \in F$ . Therefore,  $(s',0)(e,f) \in I \propto F$ , as desired.

A submodule F of E satisfies (\*) if at least one of the three conditions (2-3-4) of Theorem 2.13 is not hold for every S-weakly prime ideal I of A, (where S is a multiplicative subset of A); (i.e.,  $I \propto F$  is not  $S \propto E$ -weakly prime). Also, we say that a trivial extension satisfies (\*\*), if every ideal of  $A \propto E$  is homogeneous; that is, the ideals of  $A \propto E$  has the form  $I \propto F$ , where I is an ideal of A and F is submodule of E. Set,  $T = \{I \text{ is a nonzero } S\text{-weakly prime. For every } s \in S$ ,  $sa \notin I$ ,  $sb \notin I$  and ab = 0 implies  $a \in Ann(E)$  and  $b \in Ann(E)$ . The following theorem studies the possible transfer of the S-WP-ring property between a ring A and a trivial ring extension  $A \propto E$ .

**Theorem 2.14.** Let A be a ring, E be a nonzero A-module and F a submodule of B. Let  $S \subset Reg(A)$  be a multiplicative subset of A such that  $S \cap Ann(F) = \emptyset$ . Then:

- (1) If  $A \propto E$  is a  $(A \propto E)$ -WP-ring, then F satisfies both (\*) and  $sE \not\subset F$  for every  $s \in S$ , and every ideal in T is S-prime.
- (2) Assume that  $A \propto E$  satisfies (\*\*) and A is a S-WP-ring. Then  $A \propto E$  is a  $(A \propto E)$ -WP-ring if and only if the following condition holds:  $F \subseteq E$  satisfying (\*).

To prove Theorem 2.14, we need the following two Lemmas.

**Lemma 2.15.** Let A be a ring, I be an ideal of A and E be an A-module. Then  $I \propto E$  is  $(S \propto E)$ -prime if and only if I is S-prime.

*Proof.* Assume that  $I \propto E$  is  $(S \propto E)$ -prime. Let  $a, b \in A$  such that  $ab \in I$ . Hence  $(a,0)(b,0) = (ab,0) \in I \propto E$  and so, there exists  $(s,e) \in S \propto E$  such that  $(s,e)(a,0) \in I \propto E$  or  $(s,e)(b,0) \in I \propto E$ , then either  $sa \in I$  or  $sb \in I$  and hence I is S-prime.

Conversely, let  $(a, e), (b, f) \in A \propto E$  such that  $(a, e)(b, f) = (ab, af + be) \in I \propto E$ . Thus  $ab \in I$  and so either  $sa \in I$  or  $sb \in I$  for some  $s \in S$ . Consequently,  $(s, 0)(b, e) \in I \propto E$  or  $(s, 0)(b, f) \in I \propto E$ , as desired.

**Lemma 2.16.** Let A be a ring, I be an ideal of A, E be an A-module and F a submodule of E. Then  $I \propto F$  is an  $(S \propto E)$ -prime if and only if I is S-prime and  $sE \subset F$  for some  $s \in S$ .

*Proof.* Assume that  $I \propto F$  is an  $(S \propto E)$ -prime. Let  $a, b \in A$  such that  $ab \in I$ . Hence  $(a,0)(b,0) \in I \propto F$  and there exists  $(s,e) \in S \propto E$ 

such that  $(s,e)(a,0) \in I \propto F$  or  $(s,e)(b,0) \in I \propto F$ . Then either  $sa \in I$  or  $sb \in I$  and so I is S-prime. Now we claim that  $sE \subset F$  for some  $s \in S$ . Let  $e' \in E$ , then  $(0,e')(0,e') = (0,0) \in I \propto F$  and there exists  $(s,e) \in S \propto E$  such that  $(s,e)(0,e') \in I \propto F$ . Consequently  $(0,se) \in I \propto F$  and then  $se \in F$ . Hence  $sE \subset F$  for some  $s \in S$ .

Conversely. Let  $(a, e), (b, f) \in A \propto F$  such that  $(a, e)(b, f) \in I \propto F$ , in particular we get  $ab \in I$ . But There exists  $s \in S$  such that either  $sa \in I$  or  $sb \in I$ . So  $se, sf \in F$  since  $sE \subset F$  for some  $s \in S$ . Thus either  $(s, 0)(a, e) \in I \propto F$  or  $(s, 0)(b, f) \in I \propto F$ , as desired.  $\square$ 

#### Proof of Theorem 2.14

- (1) Assume that there exists a submodule F which satisfies the condition ( $sE \not\subset F$  for every  $s \in S$ ) but does not satisfy the (\*)-condition. Then  $I \propto F$  is a ( $S \propto E$ )-weakly prime ideal for some S-weakly prime I of A. By hypothesis,  $I \propto F$  is ( $S \propto F$ )-prime, a desired contradiction by Lemma 2.16 above. Now, let I in T. By [18, Theorem 3.1],  $I \propto E$  is ( $S \propto E$ )-weakly prime and hence ( $S \propto E$ )-prime. Then I is S-prime by Lemma 2.15 above, as desired.
- (2) Assume that  $A \propto E$  is a  $(S \propto E)$ -WP-ring. By (1), F which satisfies both the conditions  $(sE \not\subset F \text{ for every } s \in S)$  and (\*). Let H be a nonzero  $(S \propto E)$ -weakly prime ideal of  $A \propto E$ . Since F satisfies the two conditions above, we get  $H = I \propto E$ . But  $I \propto E$  is  $(S \propto E)$ -weakly prime by Theorem 2.13 above, then I must to be S-weakly prime and so I is S-prime since A is assumed to be S-WP-ring. Following Lemma 2.15, we get  $I \propto E$  is  $(S \propto E)$ -prime, as desired.

**Example 2.17.** Let A be an integral domain with quotient field K and E be a K-vector space; such that  $\dim_K(E) > 1$ . Then,  $A \propto E$  is not an  $(S \propto E)$ -WP-ring.

*Proof.* Let F be a K-vector subspace of E. By [10, Corollary 3.2],  $0 \propto F$  is weakly prime, then it is  $(S \propto E)$ -weakly prime. Hence, E does not satisfy (\*). Following Theorem 2.14,  $A \propto E$  is not  $(S \propto E)$ -WP-ring.

**Proposition 2.18.** Let  $(A, \mathfrak{m})$  be a local ring, E be an A-module such that  $\mathfrak{m}E = 0$ . If E is a simple A-module, then  $A \propto E$  is a  $(S \propto E)$ -WP-ring.

*Proof.* Assume that there is a nonzero  $(S \propto E)$ -weakly prime ideal H which is not  $(S \propto E)$ -prime. By [1, Proposition 2.4],  $H \subseteq \text{Nil}(A \propto E) = 0 \propto E$ . Then  $H = 0 \propto F$ , where  $F \subseteq E$ , a desired contradiction and this completes the proof.

Using the above result, we can construct new and no trivial examples of S-WP-rings.

**Example 2.19.** Let A be a local domain with maximal ideal  $\mathfrak{m}$ . Then,  $A \propto (A/\mathfrak{m})$  is an  $(S \propto (A/\mathfrak{m}))$ -WP-ring.

The following Proposition 2.11 study the S-weakly prime ideal in the trivial rings extension under some conditions.

**Proposition 2.20.** Let D be an integral domain and Q is a divisible D-module and S be a multiplicative subset of D. Let N be a D-submodule of Q and I be an ideal of D. Then:

- (1)  $I \propto Q$  is  $(S \propto Q)$ -weakly prime if and only if I is S-weakly prime.
- (2) If there exists  $s \in S$  such that  $sQ \subset N$ , then  $0 \propto N$  is  $(S \propto Q)$ -weakly prime.
- (3) If Q/N is S-torsion free D-module, then the following are equivalent:
  - (a)  $0 \propto N$  is an  $(S \propto Q)$ -weakly prime,
  - (b)  $0 \propto N$  is weakly prime.

Before establishing Proposition 2.20, we need the following Lemma 2.21

**Lemma 2.21.** Let A be a ring, S be a multiplicative subset of A and M be an A-module. Then for every A-module X, X is an S-torsion free A-module if and only if X is an  $(S \propto M)$ -torsion free  $(A \propto M)$ -module.

*Proof.* If X is an S-torsion free A-module. We claim that X is an  $(S \propto M)$ -torsion free  $(A \propto M)$ -module. Let  $(s,e) \in S \propto M$  and  $x \in X$  such that (s,e)x = 0, then sx = 0 and so x = 0, as desired.

Conversely, if X is an  $(S \propto M)$ -torsion free  $(A \propto M)$ -module, then for every  $s \in S$  and  $x \in X$  such that sx = 0, we get (s, 0)x = 0 and so x = 0, as desired X is an S-torsion free A-module.

## Proof of Proposition 2.20

- (1) Follows immediately from [2, Corollary 3.3].
- (2) This is obvious by definition of S-weakly prime.
- (3) If Q/N is an S-torsion free D-module, then so is  $D \propto (Q/N)$ , i.e.,  $D \propto (Q/N) \cong \frac{D \propto Q}{0 \propto N}$  is an S-torsion free D-module. Following Lemma 2.21, we get  $D \propto (Q/N) \cong \frac{D \propto Q}{0 \propto N}$  is an  $(S \propto Q)$ -torsion free  $(D \propto Q)$ -module. The equivalence  $(a) \iff (b)$  follows immediately from Theorem 2.12.

Next, in the last part of this paper, we study the transfer of S-WP-rings in amalgamation of rings along an ideal. The following remarks investigate the trivial case.

**Remark 2.22.** Let  $f: A \longrightarrow B$  be a rings homomorphism and J be an ideal of B. If J = B, then  $A \bowtie^f J$  is always an S-WP-ring by Remark 2.2.

Let  $f:A\longrightarrow B$  be a ring homomorphism and J be an ideal of B. Set  $V=\{I \text{ is a nonzero } S\text{-weakly prime ideal of } A\mid ab=0 \text{ and } sa\notin I,\ sb\notin I \text{ for each } s\in S\text{then} f(a)j+f(s)f(b)i+ij=0 \text{ for every } i,j\in J\}$  and  $S'=\{(s,f(s)\mid s\in S\}.$  Clearly  $I\bowtie^f J$  is an ideal of  $A\bowtie^f J$  and S' is a multiplicative set of  $A\bowtie^f J$ .

**Theorem 2.23.** With the above notation, if  $A \bowtie^f J$  is a S-WP-ring, then every ideal of V is S-prime.

For establishing Theorem 2.23, we need the following Lemma 2.24.

**Lemma 2.24.** Let  $f: A \longrightarrow B$  be a rings homomorphism and S be a multiplicative subset of A and J be an ideal of B. Then  $I \bowtie^f J$  is S'-prime if and only if I is S-prime.

*Proof.* Assume that  $I \bowtie^f J$  is S'-prime. Let  $a, b \in A$  with  $ab \in I$ , then  $(a, f(a))(b, f(b)) \in I \bowtie^f J$ . So there exists  $s \in S$  such that  $(s, f(s))(a, f(a)) \in I \bowtie^f J$  or  $(s, f(s))(b, f(b)) \in I \bowtie^f J$ . Then  $sa \in I$  or  $sb \in I$ .

Conversely, let  $(a, f(a) + i), (b, f(b) + j) \in A \bowtie^f J$  with  $(a, f(a) + i)(b, f(b) + j) \in I \bowtie^f J$ , then  $ab \in I$ . So there exists  $s \in S$  such that  $sa \in I$  or  $sb \in I$ . We easily get that  $(s, f(s))(a, f(a) + i) \in I \bowtie^f J$  or  $(s, f(s))(b, f(b) + j) \in I \bowtie^f J$ . We are done.

#### Proof of Theorem 2.23

Let I be an ideal of V. Then  $I \bowtie^f J$  is an S-weakly prime ideal of  $A \bowtie^f J$ . In fact, let  $(0,0) \neq (a,f(a)+i)(b,f(b)+j) \in I \bowtie^f J$ , then  $ab \in I$ . If  $ab \neq 0$ , we get either  $sa \in I$  or  $sb \in I$  for some  $s \in S$ . Hence  $(s,f(s))(a,f(a)+i) \in I \bowtie^f J$  or  $(s,f(s))(b,f(b)+j) \in I \bowtie^f J$ . Now assume that ab=0 where  $sa \neq I$  and  $sb \neq I$  for each  $s \in S$ . Then f(a)j+f(b)i+ij=0 for each  $i,j \in J$ . Since I is an ideal of V, a contradiction with the fact that  $(ab,f(a)j+f(b)i+ij) \neq (0,0)$ . But  $A \bowtie^f J$  is an S-WP-ring we get  $I \bowtie^f J$  is S-prime, then I is S-prime by Lemma 2.24 above.

**Theorem 2.25.** Let  $f: A \to B$  be a ring homomorphism where A is an integral domain and let J be a regular ideal of B such that  $f^{-1}(J) \neq 0$ . If  $S' \subset Reg(A \bowtie^f J)$ , then  $A \bowtie J$  is an S'-WP-ring.

Proof. Assume that there is a nonzero weakly prime ideal H of  $A \bowtie^f J$  that is not S'-prime. By  $[1, \text{ Proposition 2.4}], H \subsetneq \text{Nilp} (A \bowtie^f J) \subseteq \text{Nilp}(A) \bowtie^f J$ . Then,  $H = 0 \times K$ , where  $K \subsetneq J$ . Pick a nonzero element  $a \in f^{-1}(J)$  and let j be regular element of J. As,  $H^2 = 0$ , we get  $j \in J \setminus K$ . Consider  $0 \neq k \in K$ , we have  $(0,0) \neq (a,k)(0,j) \in 0 \times K$ . But, neither  $(s,f(s))(a,k) \in 0 \times K$  nor  $(s,f(s))(0,j) \in 0 \times K$  for every  $s \in S$ , a contradiction.

#### References

- [1] F. A. Almahdi, E. M. Bouba and M. Tamekkante, On weakly S-prime ideals of commutative rings, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat., 29(2), (2021), 173–186.
- [2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math, 29(4) (2003), 831–840.
- [3] D. D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra, 1(1), (2009), 3–56.
- [4] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extension definided by Prüfer conditions, J. Pure App. Algebra, 214(1) (2010), 53–60.
- [5] M. D'Anna, Construction of Gorenstein rings, J. Algebra, 306(2) (2006), 507–519.
- [6] M. D'Anna, C. A. Finacchiaro, and M. Fontana, Amalgamated algebras along an ideal, Comm. Algebra and Applications, Walter De Gruyter, (2009), 241– 252.
- [7] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3), (2007), 443—459.
- [8] M. D'Anna, C.A. Finacchiaro, and M. Fontana, *Properties of chains of prime ideals in amalgamated algebras along an ideal*, J. Pure Appl. Algebra, 214, (2010), 1633–1641.
- [9] A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring theory: a survey, Moroccan Journal of Algebra and Geometry with Applications, 1(1) (2022), 139—182.
- [10] A. El Khalfi, N. Mahdou, and Y. Zahir, Rings in which every nonzero weakly prime ideal is prime, Sao Paulo J. Math. Sci, 14(2),(2020), 689–697.
- [11] S. Glaz, Commutative Coherent Rings, Lecture Notes Math. 1371, Springer-Verlag, Berlin, 1989.
- [12] A. Hamed and A. Malek, S-prime ideals of a commutative ring Beitr. Algebra Geom., 61(3) (2020), 533–542.
- [13] A. Hamed, S-strong Mori domain of A+XB[X], Moroccan Journal of Algebra and Geometry with Applications, 1(2) (2022), 183-188.
- [14] J. A. Huckaba, Commutative Coherent Rings with Zero Divisors, Marcel Dekker, New York Basel, (1988).
- [15] S. Kabbaj and N. Mahdou, Trivial Extensions Defined by Coherent-like Conditions, Comm. Algebra, 32(10) (2004), 3937–3953.
- [16] S. Kabbaj, Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroccan Journal of Algebra and Geometry with Applications, 1(1) (2022), 1–17.

- [17] H. Kim and F. G. Wang, Foundations of Commutative rings and their Modules, Algebra and Applications, 22, Springer, 2016.
- [18] N. Mahdou, M. A. S. Moutui, and Y. Zahir, On S-weakly prime ideals of commutative rings Georgian Mathematical Journal, (2022).
- [19] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., (1962).

CHAHRAZADE BAKKARI, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY MOULAY ISMAIL, MEKNES, MOROCCO.

 $E-mail\ address:\ cbakkari@hotmail.com$ 

HAMZA EL-MZAITI, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY MOULAY ISMAIL, MEKNES, MOROCCO.

 $E-mail\ address:\ elmzaiti6@gmail.com$