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RINGS IN WHICH EVERY NONZERO S-WEAKLY
PRIME IDEAL IS S-PRIME

CHAHRAZADE BAKKARI AND HAMZA EL-MZAITI

ABSTRACT. In this paper, we introduce and study a new class of
rings with multiplicative subset S which we’ll call S-W P-rings.
A ring R with a multiplicative subset S is said to be S-W P-
ring if every nonzero S-weakly prime ideal is S-prime. We next
study the possible transfer of the properties of being S-W P-ring
in the homomorphic image, in the localization, in the trivial ring
extensions and the amalgamated algebra along an ideal introduced
and studied by the authors of [5, 6, 7, 8]. Our results allow us to
construct new original class of S-W P-rings subject to various ring
theoretical properties.

1. Introduction

Our aim is to introduce and study the class of rings in which every
nonzero S-weakly prime ideal is S-prime. Throughout this paper, all
rings considered are assumed to be commutative with non-zero identity
and all modules are nonzero unital. In [10], A. El Khalfi, N. Mahdou
and Y. Zahir introduced the concept of W P-rings. A ring A is called
W P-ring if every nonzero weakly prime ideal is prime. Recently, the
concept, of S-property has an important place in commutative algebra
and they draw attention by several authors. The S-weakly prime ideals
introduced by the authors of [1, 18] is a generalization of the work of
A. Hamed and A. Malek in [12]. Following [18] a proper ideal P is said
to be S-weakly prime (where S C A multiplicative set, and PNS = &)
if there exists s € S such that the following condition holds for every
a,b € A: 0# ab € P implies that either sa € P or sb € P. We denote
/0 is the set for all nilpotent elements of A; Ann(I) or (0 : I) denote
the annihilator of an ideal I; Reg(A) denotes the set of all regular
elements of A. If A is an integral domain, we denote its quotients field

by q¢f(A).
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Clearly, every S-prime ideal is S-weakly prime, but the converse is
not true in general. For example, the zero ideal is a weakly prime (by
definition) and so, it is S-weakly prime however is not S-prime if we
assume that the ring considered is not an integral domain. There is no
investigation on the following natural question: when every nonzero S-
weakly prime ideal is S-prime?. For this, it is could be interest to study
a class of rings satisfying the above question. We focus our attention to
this study instead of class of rings in which every S-weakly prime ideal
is S-prime. Let R be a ring and F an R-module. Then R x E, the
trivial ring extension of R by F, is the ring whose additive structure
is that of the external direct sum R @ E and whose multiplication is
defined by (a,e)(b, f) := (ab,af + be) for all a,b € R and all e, f €
E. (This construction is also known by other terminology and other
notation, such as the idealization R(+)E) (see [14, 11, 4, 16]).

Let A and B be two rings, let J be an ideal of B and let f: A — B
be a ring homomorphism. In this setting, we can consider the following
sub-ring of A x B:

Aval J={(a, fa)+])|a€ A je T},

called the amalgamation of A with B along J with respect to f (in-
troduced and studied by D’Anna et al. [6, 8]). This construction is a
generalization of the amalgamated duplication of a ring along an ideal
(introduced and studied by D’Anna and Fontana [7] and denoted by
Axal).

This paper consists of three sections including introduction. In sec-
tion 2, we investigate the transfer of S-W P-ring property to localiza-
tion and homomorphic image. We next give the necessary conditions
of different from nilpotent ideal to be a S-weakly prime which is not S-
prime, this result allows us to give a characterization of S-W P-rings.
In section 3, we study the possible transfer of the properties of being
S-W P-ring in the amalgamated algebra along an ideal introduced and
the trivial ring extensions.

2. Basic results

In this section, we introduce the S-W P-rings and we next give some
properties of the notion. Our first definition in this section is given as
follows.

Definition 2.1. A ring A with multiplicative subset S is called S-
W P-ring if every nonzero S-weakly prime ideal is S-prime.
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Remarks 2.2. (1) If SCU(A), A is an S — W — P-ring if and only
if it is W P-ring.

(2) If A is an integral domain, then A is an S-W P-ringfor every
multplicative subset S of R.

It is clear that if Sy, Ss, - -+ , S, are multiplicative subsets of the rings
Ri1, Ry, -+, R, respectively, then [}, S; is a multiplicative subset of
the ring R = [[\_, R;. Next, we study the stability of the S-WP-ring
under direct product.

Proposition 2.3. Let n > 2 be an integer and Sy, Ss,- -, S, be mul-
tiplicative subsets of the rings Ry, Ro,--- , R, respectively. Set R =
II-, Ri and S =1[;_, Si. Then R is always an S-W P-ring.

Proof. Tt is enough to prove that this proposition is true for n = 2,
the general case is established by induction on n. If P is a non-zero
(51 x Sy)-weakly prime ideal of the ring Ry x Rs, then P is (S x Ss)-
prime by [18, Theorem 2.4]. Therefore, Ry x Ry is an S-W P-ring. O

Next, let A be a ring, S be a multiplicative subset of A and I be an
ideal of A. Assume that INS = (). Notice that S = {s+1|s € S}isa
multiplicative subset of A/I. It is easy to verify that if (P/I)N.S = 0,
then PN S = .

The following proposition establishes the transfer of the S-W P-ring
property to homomorphic image.

Proposition 2.4. Let A ba a ring with multiplicative subset S and [
be an S-weakly prime ideal of A. If A is an S-W P-ring, then A/l is
an S-W P-ring.

Proof. Assume that A is an S-W P-ring, of A and let J be a nonzero
S-weakly prime ideal of A/I. Then if P/I NS =), J = P/I where P
is a nonzero S-weakly prime ideal of A by [18, Prposition 2.6]. As A
is an S-W P-ring, we get P is S-prime and so P/I is an S-prime ideal
of A/I by [12, Proposition 3]. Therefore, A/I is an S-W P-ring. Now,
if (P/I)NS # 0, then the desired result is obvious. O

Corollary 2.5. Let A be a ring such that S C U(R) and I is weakly
prime. If A is a W P-ring, then A/I is a W P-ring.

Proof. Obvious by Proposition 2.4. O

Proposition 2.6. Let A be a ring and S be a multiplicative subset of R
consist of reqular elements. If STYA is a W P-ring, then every nonzero
S-weakly prime ideal disjoint of S is S-prime. The converse is true if
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the condition holds: for any ideal S™'P of ST'A, there exists s € S
such that ST'PN A= (P:s).

Proof. Let P be a nonzero S-weakly prime ideal of A such that INS =
#. Then S~'P is weakly prime ideal of S™'A and ST'PNA = (P:s)
for some s € S by [1, Proposition 2.14]. Since S~'A is W P-ring, we
get ST!P is prime. Now, we claim that P is an S-prime ideal of A.
Let a,b € A such that ab € P. Since 42 € S7'P, we get ¢ € S™'P or
% € S7'P. But If 1€ S~1P, then 1 = 7 for some x € P and for some
s € S, thus tas = tx € P for some t € S. Now, we get sa € P for some
s € S. Therefore, P is an S-prime ideal of A.

Now assume that for any ideal S~*P of S7'A, there exists s € S such
that ST'PNA=(P:s). Then S'PNA=(P:s). Let ST'P be a
weakly prime ideal of S7'A and let ST!PNA = (P : s) for some s € S.
Following the [1, Proposition 2.14], we get P is an S-weakly prime ideal
of A (PN S = 0). By hypothesis, we get P is S-prime. Hence S™'P is
a prime ideal of S™'A by [12, Remark 1], we are done. O

The next Propositions 2.7 and 2.8 establish when the Nilradical of a
ring is S-prime.

Proposition 2.7. If P is an S-weakly prime ideal of A, then either
sP C /0 for some s € S or there exists s € S such that for every
z € V0, we get s"x € P for some n.

Proof. Assume that P is an S-weakly prime ideal of A. If P is not
S-prime, then s?P? = 0 for some s € S by [18, Theoreme 2.3]. Let
r € sP, so x = sz’ for some 2’ € P. But we have sz'sz’ = (s2/)? =0
and so sz’ € /0. Thus sP C /0 for some s € S. Now, if P is S-prime,
then there exists s € S such that for every z € 0, we get s"z € P for
some n, as desired. O

Proposition 2.8. Let A be a ring. If \/0 is S-weakly prime such that
Ann(\/ﬁ) C V0, then V0 is S-prime.

Proof. Let a,b € A such that ab € /0. If ab # 0, then there exists
s € S such that sa € V0 or sb € v/0. Since 0 is an S-weakly prime
ideal. Then we may assume that ab = 0. If ay/0 # 0, then there exists
r € V0 such that ar #0andso 0 # (b+1)a € V0. There exists also
s € S such that s(b+7) € /0 or sb € v/0. Now assume that av/0 = 0.
Likewise bv/0 = 0 and so a € Ann(\/ﬁ) implies that a € v/0. Hence
sa € Ann(+/0) for some s € S, as desired. O

Let R be aring and q be a proper ideal. Let S be a multiplicative sub-
set of R. For an element s € S, we set s-tor(R/q) :={r € R | sr € q}.
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Recall from [18] that if R is a ring and S be a multiplicative subset
of R. A proper ideal q is said to be S-(weakly)-prime if there exists
s € S such that for every a,b € R, we have: ab(# 0) € q implies that
sa € q or sb € q. In this case, we denote by (q, s) this ideal.

The following theorem characterizes the S-W P-rings.

Theorem 2.9. Let R be a ring and S be a multiplicative subset. The
following are equivalent:

(1) R is an S-W P-rings,

(2) Every S-weakly prime ideal (q, s), the following condition holds:
For every a € Z(R), either a € s-tor(R/q) or (0 : a) C s-
tor(R/q),

(8) Every S-weakly prime ideal (q, s), the following condition holds:
For every a € Z(R), either sa € q or s(0:a) C q.

The proof of Theorem 2.9 follows immediately from the following
lemma.

Lemma 2.10. Let R be a ring and S its multiplicative subset. The
following are equivalent for a proper ideal q of R:

(1) (q,s) is S-weakly-prime ideal such that the following condition
holds: For everya € Z(R), eithera € s-tor(R/q) or (0:a) C s-

tor(R/q).
(2) (q,s) is S-prime ideal.

Proof. The Lemma is obvious if we assume that R is a domain. It is
established when Z(R) # 0.

(1) = (2) Let a,b € R such that ab = 0. Our aim is to claim that
either sa € q or sb € q.

Case 1: If at least one of a or b is zero, then the result is trivial.

Case 2: Assume that both a and b are non-zero elements of R. Then
a € Z(R)\ {0}. By hypothesis, either a € s-tor(R/q) or (0 : a) C s-
tor(R/q), that is, sa € q or sb € q since b € (0 : a). Therefore, q is
S-prime ideal.

(2) = (1) It is enough to check the following condition ”for every
a € Z(R)\ {0}, either a € s-tor(R/q) or (0 : a) C s-tor(R/q)”, since
every S-prime ideal is S-weakly prime. Let a € Z(R)\{0}. So, if
a € s-tor(R/q), then as desired. If a & s-tror(R/q), then we claim
that (0 : a) C s-tor(R/q). Let b € (0 : a), then ab = 0 and so either
sa € q or sb € q since q is assumed S-prime. But a & s-tor(R/q), then
necessarily sb € q, i.e., b € s-tor(R/q). Therefore, (0: a) C s-tor(R/q).
This proof is completed.

U
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Proof of Theorem 2.9
This follows immediately from Lemma 2.10 L.

Next, we will give a condition for which the S-weakly prime ideals
and weakly-prime are the same. For this purpose, we recall the follow-
ing Definition 2.11.

Definition 2.11. [17, Definition 1.6.10] Let R be a ring and S be a
multiplicative subset. An R-module M is said to be S-torsion free if
every s € S and every x € M such that sx =0, we get x = 0.

The following Theorem 2.12 links the S-weakly prime ideals with
weakly prime.

Theorem 2.12. Let R be a ring and S be a multiplicative subset and
s € S. If q is a proper ideal of R such that R/q is an S-torsion-free
R-module, the the following are equivalent:

(1) (q,s) is S-weakly-prime,

(2) q is weakly-prime.

Proof. (2) = (1) This is obvious.

(1) = (2) Let a,b € R such that ab # 0 and ab € q. Our aim is
to show that either a € q or b € q. Denoted by T := x + q in R/q
for every x € R), since q is S-weakly prime, then either sa € q or
sb € q, i.e., sa = 0 or sb = 0. But R/q is an S-torsion-free R-module,
implies that either @ =0 or b = 0, i.e., a € q or b € q, as desired q is
weakly-prime. O

Next, we study the possible transfer of the properties of being S-
W P-ring in the trivial ring extensions. It is known from [3] that if S
is a multiplicative subset of A, then S « F is a multiplicative subset
of A o< E. We starts this part by characterization of the ideal of the
form I oc F' be S-weakly prime ideal.

Theorem 2.13. Let A be a ring, I be an ideal of A, F' a submodule
of E and S a multiplicative subset of A such that S C Reg(A) and
SNAnn(F) = 0. Then I o< F is (S o 0)-weakly prime if and only if
the following condition holds:
(1) I is S-weakly prime ideal of A and s*I* = 0 when SE ¢ F for
every s € S;
(2) Ifbe Aand s'f ¢ F, thenbf =0 orbf ¢ F;
(3) If ab# 0 and s'a € I,s'b ¢ I, then be ¢ F' for each se ¢ F';
(4) If ab =0, then
(i) af +be =0 oraf +be & F for each s'e,s'f ¢ F;
(ii) If Sa ¢ I and s'b ¢ I, thena € Ann(F) and b € Ann(F).
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Proof. Assume that I < F'is an (S o< 0)-weakly prime ideal of A o< E.
Let a,b € A such that 0 # ab € I, then (0,0) # (a,0)(b,0) € [ x F
implies that there exists (s,0) € S o 0 such that (s,0)(a,0) € I « F
or (5,0)(b,0) € I x F. So sa € I or sb € I and hence [ is an
S-weakly prime ideal of A. Assume that SE ¢ F for some s € S,
whence ((s,0)] oc F)*> = 0 by [18, Theorem 2.3] and so S?I? = 0.
Consequently (1) holds. Now, let b € A and s'f ¢ F and assume
that bf # 0 and bf € F, then (0,0) # (b, f)(0, f) € I o F implies
there exists (s',0)(b, f) € I o< F or (5',0)(0, f) € I oc F'. But neither
(s',0)(b, f) € I o< F nor (s',0)(0, f) € I < F a contradiction, so (2)
holds. Let s'a € I and s'b ¢ I such that ab # 0 and assume that be € F
for each s'e ¢ F, then (0,0) # (a,e)(b,0) = (ab,be) € I x F and so
(s',0)(b,0) € I < F or (s',0)(a,e) € I < F', but neither (so,0)(b,0) €
I & F nor (s',0)(a,e) € I < F, a desired contradiction, so (3) holds.
Assume that ab = 0, we pick s'e,s'f ¢ F such that af + be # 0 and
af +be € F, then (0,0) # (a,e)(b, f) = (ab,af + be) € I = F but
neither (s',0)(a,e) € I < F nor (s',0)(b, f) € I < F a contradiction.
Finally, let s'a ¢ I and s'b ¢ I. Assume that there exists e € F' such
that ae # 0, then (0,0) # (a,0)(b,e) = (ab,ae) € I < F and but
neither (s',0)(a,0) € I o F nor (s',0)(b,e) € I  F a contradiction.
By similarly way, we get b € Ann(F).

Conversely, let (0,0) # (a,e)(b, f) € I o< F so ab € I, two case are
then possible.
Case 1: If ab # 0 there exists ' € S such that s'a € I or b € I.
Assume that s'a € I. If se € F, then (s',0)(a,e) = (s'a,s’e) € [ x F
as desired. Assume that s'e ¢ F, if sE C F for some s € S, s ¢, e €
F, put s = §"s’, so sa = s"’s'a € I since s'a € I and se = s's’ € F,
then we get (s,0)(a,e) € I o< F. Assume that sE ¢ F for every s € S
then s2I% = 0 for some s’ € S, we put that ' = s'b. If s'b € I, then
s%ab € $”1? = 0 and so ab/ = 0. Hence s'ab = 0. It follows that ab = 0
since s is a regular element, a contradiction with the fact that s’/ ¢ I.
So suppose that s'e ¢ F. By (3), we have b'e ¢ F' and so s'be ¢ F', we
get also s'a € I, then s'af € F', (IE C F') and we have s'af +s'be € F,
a desired contradiction.
Case 2: If ab = 0. Suppose that s'e and s'f ¢ F. By (4) we have
af +be =0 or af + be ¢ F a contradiction. Then s'e € F or s'f €
F. On the other hand, assume that neither s'a € I nor s'b € I. If
s'e € F and §'f € F, then by (4) s'(af +be) = 0 and so af +be =0
since S N Ann(E) = (), again a contradiction. Hence without loss of
generality, we may assume that s'e € F' and s'f ¢ F. By (4) and (2),
we get s'be = 0 and s'af = 0 or s'af ¢ F, a contradiction. Then
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s'a € I or s'b € I. Assume that s'a € I and s'e ¢ F, then §'f € F.
But if s'a € I, then (¢',0)(b, f) € I o< F. Now if s'b ¢ I, then by (4)
we have af = 0. Since s'e ¢ F by (2), either s'be = 0 or s'be ¢ F,
a contradiction. Hence s'e € F. Therefore, (s',0)(e, f) € I < F, as
desired. 0

A submodule F' of E satisfies (x) if at least one of the three conditions
(2-3-4) of Theorem 2.13 is not hold for every S-weakly prime ideal I of
A, (where S is a multiplicative subset of A); (i.e., [ o< F'is not S o E-
weakly prime). Also, we say that a trivial extension satisfies (kx), if
every ideal of A o« F is homogeneous; that is, the ideals of A «x F
has the form I o« F, where I is an ideal of A and F' is submodule
of E. Set, T = {I is a nonzero S-weakly prime. For every s € S,
sa ¢ I, sb ¢ I and ab = 0 implies a € Ann(E) and b € Ann(FE)}.
The following theorem studies the possible transfer of the S-WP-ring
property between a ring A and a trivial ring extension A «x F.

Theorem 2.14. Let A be a ring, E be a nonzero A-module and F a
submodule of B. Let S C Reg(A) be a multiplicative subset of A such
that SN Ann(F) = 0. Then:

(1) If A x E is a (A < E)-WP-ring, then F satisfies both () and
sE ¢ F for every s € S, and every ideal in T is S-prime.

(2) Assume that A  E satisfies (**) and A is a S-WP-ring. Then
A x E is a (A < E)-WP-ring if and only if the following condition
holds: F C E satisfying (*).

To prove Theorem 2.14, we need the following two Lemmas.

Lemma 2.15. Let A be a ring, I be an ideal of A and E be an A-
module. Then I « E is (S o< E)-prime if and only if I is S-prime.

Proof. Assume that [ < F is (S o« E)-prime. Let a,b € A such that
ab € I. Hence (a,0)(b,0) = (ab,0) € I  E and so, there exists
(s,e) € S o< E such that (s,e)(a,0) € I o< E or (s,e)(b,0) € I < E,
then either sa € I or sb € I and hence [ is S-prime.

Conversely, let (a, e), (b, f) € A < E such that (a,e)(b, f)) = (ab,af+
be) € I o< E. Thus ab € I and so either sa € I or sb € I for some
s € S. Consequently, (s,0)(b,e) € I & E or (s,0)(b,f) € I x E, as
desired. g

Lemma 2.16. Let A be a ring, I be an ideal of A, E be an A-module
and F' a submodule of E. Then I « F is an (S o« E)-prime if and only
if I is S-prime and sE C F for some s € S.

Proof. Assume that I oc F'is an (S « E)-prime. Let a,b € A such
that ab € I. Hence (a,0)(b,0) € I < F' and there exists (s,e) € S x E
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such that (s,e)(a,0) € I o< F or (s,e)(b,0) € I o F. Then either
sa € I or sb € I and so [ is S-prime. Now we claim that sEE C F' for
some s € S. Let ¢/ € E, then (0,¢')(0,€¢') = (0,0) € I o< F and there
exists (s,e) € S o« E such that (s,e)(0,¢') € I o< F. Consequently
(0,se) € I o< F and then se € F. Hence sE C F for some s € S.
Conversely. Let (a,e), (b, f) € A < F such that (a,e)(b, f) € [ x F,
in particular we get ab € I. But There exists s € S such that either
sa € I or sbe I. So se,sf € F since sk C F for some s € S. Thus
either (s,0)(a,e) € I o< F or (s,0)(b, f) € I o F, as desired. O

Proof of Theorem 2.14

(1) Assume that there exists a submodule F' which satisfies the con-
dition (sE ¢ F for every s € S) but does not satisfy the (x)-condition.
Then I < F'is a (S o< E)-weakly prime ideal for some S-weakly prime
I of A. By hypothesis, I « F'is (S o F)-prime, a desired contradiction
by Lemma 2.16 above. Now, let I in T. By [18, Theorem 3.1], I < E
is (S o F)-weakly prime and hence (S o< E)-prime. Then I is S-prime
by Lemma 2.15 above, as desired.

(2) Assume that A «x F is a (S « E)-WP-ring. By (1), F' which
satisfies both the conditions (sE ¢ F for every s € S) and (x). Let
H be a nonzero (S o E)-weakly prime ideal of A o« E. Since F'
satisfies the two conditions above, we get H = [ o« E. But [ o E is
(S o E)-weakly prime by Theorem 2.13 above, then I must to be S-
weakly prime and so I is S-prime since A is assumed to be S-WP-ring.
Following Lemma 2.15, we get [ o< E' is (S o E)-prime, as desired.

Example 2.17. Let A be an integral domain with quotient field K and
E be a K-vector space; such that dimg(E) > 1. Then, A < E is not
an (S o< E)-W P-ring.

Proof. Let F' be a K-vector subspace of E. By [10, Corollary 3.2],
0 o< F' is weakly prime, then it is (S o F)-weakly prime. Hence, F
does not satisfy (*). Following Theorem 2.14, A « E is not (S o« E)-
W P-ring. 0]

Proposition 2.18. Let (A, m) be a local ring, E be an A-module such
that mE = 0. If F is a simple A-module, then A x E is a (S x E)-
W P-ring.

Proof. Assume that there is a nonzero (S o« E)-weakly prime ideal H
which is not (S o E)-prime. By [1, Proposition 2.4], H C Nil(A
F)=0x E. Then H =0 « F, where F' C E, a desired contradiction
and this completes the proof. O
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Using the above result, we can construct new and no trivial examples
of S-W P-rings.

Example 2.19. Let A be a local domain with mazimal ideal m. Then,
Ao (A/m) is an (S o (A/m))-W P-ring.

The following Proposition 2.11 study the S-weakly prime ideal in the
trivial rings extension under some conditions.

Proposition 2.20. Let D be an integral domain and Q) is a divisible D-
module and S be a multiplicative subset of D. Let N be a D-submodule
of @ and I be an ideal of D. Then:

(1) I x @Q is (S x Q)-weakly prime if and only if I is S-weakly
prime.

(2) If there exists s € S such that sQ C N, then 0 o< N is (S x Q)-
weakly prime.

(3) If Q/N is S-torsion free D-module, then the following are equiv-
alent:
(a) 0 xx N is an (S x Q)-weakly prime,
(b) 0 < N is weakly prime.

Before establishing Proposition 2.20, we need the following Lemma
2.21

Lemma 2.21. Let A be a ring, S be a multiplicative subset of A and
M be an A-module. Then for every A-module X, X is an S-torsion
free A-module if and only if X is an (S o< M)-torsion free (A o< M)-
module.

Proof. If X is an S-torsion free A-module. We claim that X is an
(S o« M)-torsion free (A o< M)-module. Let (s,e) € S « M and
x € X such that (s,e)z =0, then sz = 0 and so z = 0, as desired.
Conversely, if X is an (S oc M)-torsion free (A o« M)-module, then
for every s € S and x € X such that sz = 0, we get (s,0)x =0 and so
x =0, as desired X is an S-torsion free A-module. [l

Proof of Proposition 2.20

(1) Follows immediately from [2, Corollary 3.3].

(2) This is obvious by definition of S-weakly prime.

(3) If Q/N 1is an S-torsion free D-module, then so is D o« (Q/N),

ie, D x (Q/N) = Q;Lf\? is an S-torsion free D-module. Following

Lemma 2.21, we get D o« (Q/N) = &Lj\? is an (S o Q)-torsion free

(D « Q)-module. The equivalence (a) <= (b) follows immediately
from Theorem 2.12.
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Next, in the last part of this paper, we study the transfer of S-W P-
rings in amalgamation of rings along an ideal. The following remarks
investigate the trivial case.

Remark 2.22. Let f : A — B be a rings homomorphism and J be
an ideal of B. If J = B, then A >/ J is always an S-W P-ring by
Remark 2.2.

Let f : A — B be a ring homomorphism and J be an ideal of B.
Set V' = {I is a nonzero S-weakly prime ideal of A | ab =0 and sa ¢
I, sb¢ I for each s € Sthenf(a)j + f(s)f(b)i +ij = 0 for every i, j €
J} and S = {(s, f(s) | s € S}. Clearly I </ J is an ideal of A >/ J
and S’ is a multiplicative set of A >/ J.

Theorem 2.23. With the above notation, if Av<f J is a S-W P-ring,
then every ideal of V' is S-prime.

For establishing Theorem 2.23, we need the following Lemma 2.24.

Lemma 2.24. Let f : A — B be a rings homomorphism and S be
a multiplicative subset of A and J be an ideal of B. Then I </ J is
S’-prime if and only if I is S-prime.

Proof. Assume that I </ J is S’-prime. Let a,b € A with ab € I,
then (a, f(a))(b, f(b)) € I >/ J. So there exists s € S such that
(s, f(8))(a, f(a)) € I </ J or (s, f(s))(b, f(b)) € I </ J. Then sa € I
or sbe .

Conversely, let (a, f(a) + i), (b, f(b) + j) € A >/ J with (a, f(a) +
i)(b, f(b) + j) € I >/ J, then ab € I. So there exists s € S such that
sa € I or sb € I. We easily get that (s, f(s))(a, f(a) +i) € I </ J or
(s, f(8))(b, f(b) + j) € I > J. We are done. O

Proof of Theorem 2.23

Let I be an ideal of V. Then I </ .J is an S-weakly prime ideal of
A</ J. In fact, let (0,0) # (a, f(a) +i)(b, f(b) + j) € I >/ J, then
abe I. If ab # 0 , we get either sa € I or sb € I for some s € S. Hence
(s, f(8))(a, f(a) +1i) € T <! J or (s, f(s))(b, f(b) + j) € I </ J. Now
assume that ab = 0 where sa # I and sb # I for each s € S. Then
f(a)j + f(b)i +ij = 0 for each i,j € J. Since [ is an ideal of V, a
contradiction with the fact that (ab, f(a)j + f(b)i +ij) # (0,0). But
Ap<! Jisan S-W P-ring we get I >/ J is S-prime, then [ is S-prime
by Lemma 2.24 above.

Theorem 2.25. Let f : A — B be a ring homomorphism where A is an
integral domain and let J be a reqular ideal of B such that f~1(J) # 0.
If 8" C Reg(Aw<! J), then A< J is an S’-W P-ring.
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Proof. Assume that there is a nonzero weakly prime ideal H of A </ J
that is not S’-prime. By [1, Proposition 2.4], H C Nilp (A >/ J) C
Nilp(A4) </ J. Then, H = 0 x K, where K C J. Pick a nonzero
element a € f~!(J) and let j be regular element of J. As, H*> =0, we
get j € J\K. Consider 0 # k € K, we have (0,0) # (a,k)(0,j) € 0x K.

But,

neither (s, f(s))(a, k) € 0x K nor (s, f(s))(0,7) € 0x K for every

s € S, a contradiction. O

(1
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